James Watt
Em meados de 1770, o inventor escocês James Watt criou um novo modelo de máquina térmica de grandes vantagens em relação a que já existia na época. A criação de Watt revolucionou a sociedade daquela época. O funcionamento de sua máquina obedecia a segunda lei da termodinâmica, que diz que uma máquina térmica, trabalhando em ciclos, ao retirar calor da fonte quente utiliza parte dele para executar o trabalho e o restante rejeita para a fonte fria. O dispositivo criado por James foi utilizado tanto para movimentar moinhos e bombas, como também para mover locomotiva e barcos a vapor. Por ser mais econômica e com capacidades para realizar trabalhos muito maiores, a máquina de Watt foi empregada também nas indústrias, fato esse que deu início ao desenvolvimento nesse setor, possibilitando dessa forma a revolução industrial que ocorreu no século XIX.
Biografia: Inventor da moderna máquina a vapor, que possibilitou a revolução industrial, James Watt foi mundialmente reconhecido quando seu nome foi dado à unidade de potência de energia -- watt.
James Watt nasceu em Greenock, Escócia, em 19 de janeiro de 1736. Aos 19 anos foi para Londres fazer aprendizado de mecânico especializado na construção de instrumentos, mas em menos de um ano regressou à Escócia, por motivos de saúde. Por não possuir o certificado de aprendiz, teve dificuldades em montar uma oficina em Glasgow. Em 1757, no entanto, conseguiu ser escolhido para fabricar e reparar instrumentos matemáticos da Universidade de Glasgow.
Em 1763 recebeu para consertar uma máquina a vapor do tipo Newcomen, a mais avançada de então. Observou que a perda de grandes quantidades de calor era o defeito mais grave da máquina, e idealizou então o condensador, seu primeiro grande invento, dispositivo que seria mantido separado do cilindro mas conectado a ele. No condensador a temperatura do vapor seria mantida baixa (cerca de 37o C), enquanto que no cilindro permaneceria elevada. Procurou, assim, alcançar o máximo de vácuo no condensador. Watt fechou o cilindro, que antes permanecia aberto, eliminou totalmente o ar e criou uma verdadeira máquina a vapor.
Em 1769 obteve a primeira patente do invento e de vários aperfeiçoamentos por ele próprio concebidos. Endividado, associou-se a John Roebuck, que o ajudou financeiramente. Um protótipo foi construído e sobre ele se realizou a correção de algumas falhas. Matthew Boulton, dono de uma firma de engenharia, comprou a parte de Roebuck e deu início à construção das máquinas projetadas por Watt.
De amplo emprego na secagem de minas, o engenho de Watt era destituído de qualquer aplicação mais prática até que seu inventor idealizou a "gaveta", movida pela própria máquina e destinada a fazer o vapor atuar sobre as duas faces do êmbolo, ao mesmo tempo que impelia o vapor para o condensador. Novos detalhes foram ainda aperfeiçoados até que o motor atingiu a forma sob a qual tornou-se universalmente empregado a partir de 1785. James Watt morreu em Heathfield Hall, perto de Birmingham, Inglaterra, em 25 de agosto de 1819.
James Watt nasceu em Greenock, Escócia, em 19 de janeiro de 1736. Aos 19 anos foi para Londres fazer aprendizado de mecânico especializado na construção de instrumentos, mas em menos de um ano regressou à Escócia, por motivos de saúde. Por não possuir o certificado de aprendiz, teve dificuldades em montar uma oficina em Glasgow. Em 1757, no entanto, conseguiu ser escolhido para fabricar e reparar instrumentos matemáticos da Universidade de Glasgow.
Em 1763 recebeu para consertar uma máquina a vapor do tipo Newcomen, a mais avançada de então. Observou que a perda de grandes quantidades de calor era o defeito mais grave da máquina, e idealizou então o condensador, seu primeiro grande invento, dispositivo que seria mantido separado do cilindro mas conectado a ele. No condensador a temperatura do vapor seria mantida baixa (cerca de 37o C), enquanto que no cilindro permaneceria elevada. Procurou, assim, alcançar o máximo de vácuo no condensador. Watt fechou o cilindro, que antes permanecia aberto, eliminou totalmente o ar e criou uma verdadeira máquina a vapor.
Em 1769 obteve a primeira patente do invento e de vários aperfeiçoamentos por ele próprio concebidos. Endividado, associou-se a John Roebuck, que o ajudou financeiramente. Um protótipo foi construído e sobre ele se realizou a correção de algumas falhas. Matthew Boulton, dono de uma firma de engenharia, comprou a parte de Roebuck e deu início à construção das máquinas projetadas por Watt.
De amplo emprego na secagem de minas, o engenho de Watt era destituído de qualquer aplicação mais prática até que seu inventor idealizou a "gaveta", movida pela própria máquina e destinada a fazer o vapor atuar sobre as duas faces do êmbolo, ao mesmo tempo que impelia o vapor para o condensador. Novos detalhes foram ainda aperfeiçoados até que o motor atingiu a forma sob a qual tornou-se universalmente empregado a partir de 1785. James Watt morreu em Heathfield Hall, perto de Birmingham, Inglaterra, em 25 de agosto de 1819.
Heron de Alexandria
A definição de que calor é uma forma de energia só foi estabelecida no século XX, no entanto, já na Antiguidade sabia-se que o calor podia ser usado para produzir vapor e através dele, realizar trabalho. Heron, um inventor grego, no século I d.C. construiu o primeiro dispositivo que funcionava através do vapor produzido pelo aquecimento da água. Esse vapor colocava em rotação uma esfera de metal que estava acoplada à máquina de Heron.
Hoje, aos olhos da ciência moderna, o dispositivo criado por Heron é uma máquina térmica, ou seja, ela é um dispositivo com capacidade de transformar o calor, energia térmica, em trabalho mecânico. No entanto, essa máquina criada não foi usada para produzir energia mecânica em grandes escalas. Foi somente no século XVIII que foram construídas as primeiras máquinas térmicas capazes de produzir energia mecânica em escala industrial.
Hoje, aos olhos da ciência moderna, o dispositivo criado por Heron é uma máquina térmica, ou seja, ela é um dispositivo com capacidade de transformar o calor, energia térmica, em trabalho mecânico. No entanto, essa máquina criada não foi usada para produzir energia mecânica em grandes escalas. Foi somente no século XVIII que foram construídas as primeiras máquinas térmicas capazes de produzir energia mecânica em escala industrial.
Biografia: Inventor, geômetra e escritor grego, possivelmente nascido em Alexandria, no Egito, que realizou excelentes trabalhos em Física e Geometria, sendo-lhe creditada a fórmula que permite calcular a área de um triângulo conhecidos seus três lados, e citado como inventor da primeira máquina a vapor de que se tem notícia. Foi essencialmente um autor de muitos livros de física e matemática, especialmente na geometria, da antiga Grécia. São conhecidas 18 obras com sua assinatura, podendo ser também considerado um matemático em função da autoria da fórmula de Heron para cálculo da área de um triângulo, demonstrada em A Métrica, obra encontrada (1896), e um engenheiro, seguidor das idéias de Ctesibius. Outra obra matemática importante de sua autoria é Geométrica (75 d. C.), onde ele demonstrou sua limitada competência na trigonometria, mas apresentou uma fórmula para determinação da área de figuras geométricas regulares de 3 a 12 lados, círculos e seus segmentos, elipses e segmentos parabólicos, além de superfícies de cilindros, cones, esferas e segmentos de esferas. Sua preferência matemática, de forte influência babilônica, era pelos exemplos de mensuração. Trabalhou com um algoritmo para extração de raízes quadradas e cúbicas, já usado pelos babilônios a mais de 2000 anos antes dele, e desenvolveu fórmulas para o cálculo do volume de diversos sólidos, como cones, pirâmides, cilindros, paralelepípedos, prismas, troncos de cones e pirâmides, esferas e segmentos esféricos, anéis cilíndricos e alguns prismatóides. Escreveu sobre mecânica, onde são conhecidos 13 trabalhos, entre eles Máquinas de guerra e Mecânica, onde trata de diversas máquinas simples e do movimento circular. Em Pneumatica descreveu os princípios de funcionamento de sua máquina a vapor. Em Catoptrica escreveu sobre óptica, onde demonstrou os fundamentos da propagação retilínea da luz e a lei da reflexão). Em Dioptra, nome de um aparelho de utilidade análoga à dos modernos teodolitos, escreveu sobre astronomia e geodésia. Na história da hidráulica é lembrado como inventor de pequenos engenhos mecânicos baseados nas propriedades dos fluidos e em leis das máquinas simples, entre eles, o sifão, um tipo primitivo de uma máquina a vapor e instrumentos precursores do termômetro e do termoscópio. Morreu em algum lugar da Grécia e alguns historiadores lhe atribuem uma parceria na invenção da bomba de êmbolo devido a um de seus escritos, porém provavelmente foi só um aperfeiçoamento da invenção de Ctesibius. Suas máquinas de propulsão ilustram o princípio científico da terceira lei de Newton (1687).
James Prescott Joule
Por volta da metade do século XIX, o físico inglês James Prescott Joule demonstrou experimentalmente a equivalência entre trabalho e calor. Chegou a comprovar que, quando o calor se transforma em trabalho, ou vice-versa, existe uma equivalência entre as duas manifestações de energia de tal modo que a uma quantidade de calor desaparecida corresponde a produção de uma quantidade de trabalho. Para realizar sua experiência, ele utilizou um aparelho chamado calorímetro (abaixo). Este consiste de um recipiente isolado termicamente formado por paredes duplas, um agitador, um termômetro e um tampão. Joule colocou água no calorímetro, fazendo girar lá dentro um eixo com paletas, acionado por um peso, que, com seu movimento, fez aumentar a temperatura do líquido, medida por um termômetro. O peso, ao cair, fez as paletas se moverem.
Medindo o trabalho realizado pelo peso ao cair e a correspondente elevação da temperatura da água, chega-se sempre ao mesmo resultado: 4,18 joule de trabalho proporcionam 1 caloria. Trata-se do equivalente mecânico do calor e se expressa:
1 cal = 4,18 J ou 1 J = 0,24 cal
Biografia: James Prescott Joule estudou durante algum tempo com John Dalton (químico e físico inglês, fundador da teoria atômica moderna), mas sua formação científica foi principalmente autodidática.
James Joule foi o primeiro cientista a estabelecer o princípio da interconversibilidade das diversas formas de energia, ou seja, da termodinâmica. Ele também se preocupou, desde cedo, com a importância de se fazerem medidas exatas - suas pesquisas caracterizaram-se particularmente por essa preocupação com a precisão dos dados obtidos.
Sua importante descoberta resultou de uma longa série de experiências sobre as relações quantitativas entre os efeitos elétricos, mecânicos e químicos. Em 1843, Joule anunciou ter determinado a quantidade de trabalho necessária para produzir uma unidade de calor, chamada equivalente mecânico do calor.
James Joule foi o primeiro cientista a estabelecer o princípio da interconversibilidade das diversas formas de energia, ou seja, da termodinâmica. Ele também se preocupou, desde cedo, com a importância de se fazerem medidas exatas - suas pesquisas caracterizaram-se particularmente por essa preocupação com a precisão dos dados obtidos.
Sua importante descoberta resultou de uma longa série de experiências sobre as relações quantitativas entre os efeitos elétricos, mecânicos e químicos. Em 1843, Joule anunciou ter determinado a quantidade de trabalho necessária para produzir uma unidade de calor, chamada equivalente mecânico do calor.
Unidade Joule
Para conseguir o equivalente mecânico do calor, Joule empregou quatro métodos crescentes de exatidão. O primeiro consistia em medir a elevação da temperatura, a corrente e o trabalho mecânico resultante da rotação de um pequeno eletromagneto na água entre os pólos de outro magneto.
O segundo método determina a elevação da temperatura forçando a água através de tubos capilares. O terceiro depende da compressão do ar. E o quarto - o mais conhecido nos dias de hoje -, este produz calor pela fricção da água por meio de pás, girando sob a ação da queda de um peso.
Por esse processo Joule obteve diferentes resultados para a unidade térmica britânica, concluindo por adotar a de 781,8 libras-pé, chamada unidade Joule, e que corresponde ao trabalho produzido ao se deslocar um metro um corpo com um Newton (1 N) de peso.
O segundo método determina a elevação da temperatura forçando a água através de tubos capilares. O terceiro depende da compressão do ar. E o quarto - o mais conhecido nos dias de hoje -, este produz calor pela fricção da água por meio de pás, girando sob a ação da queda de um peso.
Por esse processo Joule obteve diferentes resultados para a unidade térmica britânica, concluindo por adotar a de 781,8 libras-pé, chamada unidade Joule, e que corresponde ao trabalho produzido ao se deslocar um metro um corpo com um Newton (1 N) de peso.
Nenhum comentário:
Postar um comentário